Intracellular Serine Protease Inhibitor SERPINB4 Inhibits Granzyme M-Induced Cell Death
نویسندگان
چکیده
Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4) M(-1) s(-1). SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.
منابع مشابه
Granzyme B and natural killer (NK) cell death.
Granzyme B is a unique serine protease, which plays a crucial role for target cell death. Several mechanisms of delivery of granzyme B to target cells have been recently identified. Granzyme B directly activates Bid, a specific substrate for granzyme B, resulting in caspase activation. Granzyme B efficiently cleaves many prominent autoantigens, and the hypothesis that autoantibodies arise when ...
متن کاملSPI-CI and SPI-6 cooperate in the protection from effector cell-mediated cytotoxicity.
Tumors have several mechanisms to escape from the immune system. One of these involves expression of intracellular anticytotoxic proteins that modulate the execution of cell death. Previously, we have shown that the serine protease inhibitor (serpin) SPI-6, which inactivates the cytotoxic protease granzyme B (GrB), is capable of preventing cytotoxic T lymphocyte (CTL)-mediated apoptosis. Despit...
متن کاملInhibition of CPP32-like proteases prevents granzyme B- and Fas-, but not granzyme A-based cytotoxicity exerted by CTL clones.
The perforin-facilitated entry of granzymes in target cells is a major mechanism used by CTL to induce cell death. It has been reported that granzyme B can cleave and activate the apoptotic cysteine protease p32 (CPP32)/Yama and its homologues in vitro. However, the mechanism for granzyme-based cytolysis exerted by intact CTL remains unclear. In the present work, we have used anti-CD3 mAb-redir...
متن کاملGranzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B.
Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using pur...
متن کاملDifferential survival of cytotoxic T cells and memory cell precursors.
It is widely assumed that the development of memory CD8 T cells requires the escape of CTLs from programmed cell death. We show in this study that although serine protease inhibitor 6 (Spi6) is required to protect clonal bursts of CTLs from granzyme B-induced programmed cell death, it is not required for the development of memory cells. This conclusion is reached because memory cell precursors ...
متن کامل